手機(jī)掃碼查看 移動(dòng)端的落地頁
山東冠熙環(huán)保設(shè)備有限公司
主營產(chǎn)品: 通風(fēng)機(jī)
離心除塵離心風(fēng)機(jī)-中壓除塵離心風(fēng)機(jī)-冠熙風(fēng)機(jī)
價(jià)格
訂貨量(件)
¥2099.00
≥1
店鋪主推品 熱銷潛力款
䀋䀔䀌䀒䀎䀐䀍䀑䀒䀏䀑
在總結(jié)以往研究經(jīng)驗(yàn)的基礎(chǔ)上,以離心風(fēng)機(jī)為研究對象,利用NUMECA軟件對不同的葉片開槽方案進(jìn)行了模擬,比較了不同方案下的風(fēng)機(jī)性能優(yōu)化,并結(jié)合分布確定了葉片開槽的較佳參數(shù)。葉輪內(nèi)部流場。本文對離心風(fēng)機(jī)原葉輪開槽前的內(nèi)部流場進(jìn)行了數(shù)值模擬。結(jié)果表明,風(fēng)扇葉片通道的吸力面發(fā)生了邊界層分離,形成了一個(gè)較大的渦流區(qū)。后半段通道內(nèi),吸力面邊界層分離較為嚴(yán)重,高速氣流占整個(gè)通道寬度的65%左右。在對離心風(fēng)機(jī)電機(jī)基礎(chǔ)和電機(jī)進(jìn)行技術(shù)改造的基礎(chǔ)上,通過改變引風(fēng)機(jī)的葉輪形式和直徑,增加引風(fēng)機(jī)的輸出,并根據(jù)原風(fēng)機(jī)的輸出,將引風(fēng)機(jī)的容量提高1500帕。因此,可以通過在容易發(fā)生邊界層分離的葉片端部開一個(gè)小間隙來防止邊界層分離的產(chǎn)生和發(fā)展,從而使流經(jīng)該間隙的部分流體能夠吹走吸入面出口附近的流體。以往的研究表明,狹縫的大小對氣流有很大的影響,但在粉塵環(huán)境中,狹縫過?。íM縫寬度約為2 mm)可能會(huì)被堵塞而失去其功能,這限制了該技術(shù)在實(shí)際中的應(yīng)用。因此,為了確保離心風(fēng)機(jī)不發(fā)生堵塞,開口處有足夠的間隙。考慮到工程實(shí)踐中操作的方便性,用A的變化來表示縫的位置,用B的變化來控制縫角的大小。比較采用A/C(c為葉片弦長)與B/C的無量綱形式。在計(jì)算和優(yōu)化槽位和槽角時(shí),采用了固定一個(gè)比例和調(diào)整另一個(gè)比例的方法。
離心風(fēng)機(jī)改造后,風(fēng)機(jī)總壓明顯提高。雖然方案一的總壓在大流量區(qū)和小流量區(qū)附近增加較多,但在額定流量附近總壓的改善不如方案三,結(jié)合效率提高的數(shù)據(jù),很明顯方案三是較佳的優(yōu)化方案。風(fēng)機(jī)總壓提高4.25%,效率提高1.49%。方案四,效率降低0.19%,主要是由于流經(jīng)槽的流體與原葉輪內(nèi)的高速流體發(fā)生強(qiáng)烈碰撞,造成沖擊損失。在風(fēng)機(jī)運(yùn)行過程中,當(dāng)集熱器流入葉輪轉(zhuǎn)輪時(shí),流體受到慣性力和科里奧利力的影響,在后圓盤B段附近形成高速區(qū),使B段附近的流速和流量大于A段,從而使風(fēng)機(jī)性能從兩個(gè)方面得到改善。一是提高前盤的徑向速度,即A段,使離心風(fēng)機(jī)出口處的流體速度趨于均勻;二是優(yōu)化后盤附近的速度梯度。由此可見,開槽后葉輪出口處的流速整體上得到了提高。葉輪轉(zhuǎn)輪內(nèi)靠近后圓盤的速度在整個(gè)轉(zhuǎn)輪內(nèi)比較均勻,沒有明顯的高速聚集區(qū),因此流場比較合理。01325*105pa,初始溫度t=293K,軸向入口速度=18m/s,所有旋轉(zhuǎn)壁(如前盤、后盤、葉輪葉片等)的輸入速度n=1450r/min,其他非旋轉(zhuǎn)壁(如蝸殼)的輸入速度為零。與子午面上的原風(fēng)機(jī)相比,其軸向平均速度較高,速度梯度較小。因此,開槽改善了葉輪通道內(nèi)的流場,大大提高了離心風(fēng)機(jī)的總壓和效率。邊界層分離現(xiàn)象發(fā)生在原風(fēng)機(jī)葉片通道的吸力面上,形成較大的渦流區(qū);在通道的后半段,邊界層分離現(xiàn)象也發(fā)生在通道的吸力面上。葉片壓力面上的壓力高于吸入面上的壓力。二次流在葉輪通道中形成(其部分速度沿葉輪的圓周方向)。同時(shí),在離心力的作用下,圓周方向形成一定的角度。
離心風(fēng)機(jī)及內(nèi)部三維流場的計(jì)算辦法
依據(jù)作業(yè)原理的不同風(fēng)機(jī)能夠分為容積式、葉片式和噴射式三種。其間葉片式風(fēng)機(jī)首要有離心式、混流式、軸流式和橫流式四種,其間使用醉廣泛的即為離心式風(fēng)機(jī)。離心風(fēng)機(jī)葉輪中的氣體流面簡直與葉輪的滾動(dòng)軸面筆直。A風(fēng)機(jī)入口擋板開啟80%時(shí),風(fēng)機(jī)電流為146A,B風(fēng)機(jī)入口擋板開啟80%時(shí),風(fēng)機(jī)電流為145。其葉輪滾動(dòng)所發(fā)生的離心力為離心風(fēng)機(jī)壓強(qiáng)升的首要來歷,而且在葉輪內(nèi)部由離心力發(fā)生的壓強(qiáng)升要遠(yuǎn)遠(yuǎn)大于氣體相對速度改動(dòng)而發(fā)生的壓強(qiáng)升,而且選用增大風(fēng)機(jī)的葉輪寬度增大風(fēng)機(jī)流量的辦法,往往導(dǎo)致風(fēng)機(jī)的功率下降,因而離心風(fēng)機(jī)一般適用于高壓、小流量的場合。下面臨其功能參數(shù)、結(jié)構(gòu)特色和內(nèi)部丟失等進(jìn)行具體介紹。
離心風(fēng)機(jī)的壓力
離心風(fēng)機(jī)的靜壓和全壓靜壓sp為氣體對平行于氣流的物體外表效果的壓力,它一般是經(jīng)過筆直于物體外表的孔來進(jìn)行丈量。
通風(fēng)機(jī)的功能曲線通風(fēng)機(jī)的全壓t FP、功率P、功率η等功能參數(shù)隨通風(fēng)機(jī)的流量Q改變的聯(lián)系曲線,稱為通風(fēng)機(jī)的功能曲線。依據(jù)通風(fēng)機(jī)的功能曲線,不只能夠查驗(yàn)計(jì)算參數(shù)與實(shí)測參數(shù)之間的共同程度,還能夠斷定通風(fēng)機(jī)的適應(yīng)性。當(dāng)葉輪旋轉(zhuǎn)直徑增加到490m時(shí),改進(jìn)后的風(fēng)機(jī)總壓力增加到4765pa,相應(yīng)的風(fēng)機(jī)運(yùn)行力矩增加到4。例如當(dāng)通風(fēng)機(jī)的功率特性曲線較平整時(shí),此刻風(fēng)機(jī)的搞效區(qū)較大,在變工況時(shí)通風(fēng)機(jī)仍能夠在搞效的工況點(diǎn)小作業(yè),此刻能夠認(rèn)為該風(fēng)機(jī)的適應(yīng)性較好。